OSCAR: Overtaking Strategy in Competitive
Autonomous Racing

Tristan Scheiner®, Yongjun Cho*, Jiyeong Oh*
*Luddy School of Informatics, Computing, and Engineering,
Indiana University Bloomington, IN, USA
Emails: {trcschei, yc134, ohjiye} @iu.edu

Abstract—This paper presents OSCAR, a framework for
competitive autonomous racing that combines Model Predictive
Contouring Control (MPCC) with opponent-aware behavior pre-
diction. MPCC enables high-speed, flexible path following with
collision avoidance via soft constraints, while opponent behavior
is modeled using information-theoretic bounded rationality. The
approach is evaluated in low- and high-fidelity simulations and
on a real FITENTH vehicle, demonstrating robust performance,
effective multi-vehicle interaction, and reliable simulation-to-real
transfer.

Index Terms—Model Predictive Control, Bounded Rationality,
F1Tenth, ROS2, Autonomous Racing, Multi-Robot System

NN YRR NN

Fig. 1.
vehicle is shown navigating within the track boundaries defined by flexible
orange tubing, utilizing the Vicon motion capture system for real-time state
estimation and MPCC controller with ROS2.

Experimental setup on the custom indoor circuit. The FITENTH

I. INTRODUCTION
A. Background

This project integrates high-performance control theory with
the specific hardware to solve the autonomous racing prob-
lem. We utilize the FITENTH research platform to validate
a Bounded Rationality and a Model Predictive Contouring
Control (MPCC) scheme. The specific components of this
framework are defined as follows:

1) The FITENTH Platform: We utilize FITENTH, a 1:10
scale autonomous racing vehicle with Ackerman steering,
designed for high-fidelity simulation research. This platform
mimics the challenges faced by real-world autonomous ve-
hicles by limiting the system to only use limited embedded

computing (NVIDIA Jetson). There is potential for a variety
of sensors in order to perceive the environment, for instance
LiDAR and camera. This hardware configuration imposes
strict latency requirements, making lightweight and robust
control algorithms essential for real-world vehicle dynamics.

2) Bounded Rationality in Decision Making: Our planning
architecture is based on the concept of bounded rationality,
which assumes that rational decision-making is limited by
the available information, computational resources, and time
constraints required for decision-making. The Purpose of de-
cision making is that an agent picks an actions that maximizes
some utility. However, the bounded rationality models decision
making where an agent satisfies some goal rather than strictly
maximizes

3) From Model Predictive Control (MPC) to MPCC: We
use MPCC to control the FITENTH platform. The MPC ef-
fectively handles constraints by optimizing inputs over a finite
time horizon, but it typically tracks a fixed time-parameterized
reference trajectory. This approach reveals vulnerabilities in
racing scenarios; if the vehicle falls behind the reference
time, a typical MPC will aggressively attempt to “catch up,”
often leading to instability. To address this issue, we used
MPCC. Instead of tracking a specific point in time, MPCC
introduces a progress variable () to track the geometric path
itself. The controller minimizes the lateral contour error while
simultaneously maximizing the progress speed along the track,
allowing the vehicle to dynamically adjust its speed to match
cornering limits without being constrained by a pre-calculated
speed profile.

B. Motivation & Objectives

Autonomous racing provides a challenging testbed for
decision-making under dynamic, multi-agent interactions,
where safety, performance, and adaptability must be balanced
in real time. In overtaking scenarios, an ego vehicle must not
only follow a track efficiently but also anticipate and react to
the behavior of opponents, whose actions may be suboptimal
or inconsistent.

The motivation of this work is to develop an integrated
framework that combines robust control with opponent-aware
decision-making to enable safe and competitive autonomous
racing. To this end, our objectives are to: (i) design a controller
capable of stable and safe autonomous driving on a closed
track, (ii) enable multi-vehicle interaction through collision



avoidance mechanisms, (iii) incorporate opponent behavior
prediction based on bounded rationality to support informed
overtaking decisions, (iv) develop a high-fidelity simulation
environment to validate these methods without real-world risk,
and (v) transfer and evaluate the controller in real-world
experiments using the FITENTH car.

C. Problem Statement

In high-speed racing scenarios, being able to predict the
behaviors of opponents is crucial both for the safety of your
own vehicle and performing high-level behaviors including
overtaking or defending your current position. In these situa-
tions, opponents are handing multiple objectives and typically
do not have enough time or resources to calculate optimal be-
haviors, leading to these agents picking actions that are ”good
enough” or “satisfactory”. When predicting the behaviors of
opponents however many modern approaches assume agents
are picking actions that strictly maximize some utility, leading
to unrealistic predictions for actions. Therefore, the motivation
for this framework is to move towards predicting more realistic
behaviors from opponents in high-speed racing for better high-
level behavior handling.

II. LITERATURE REVIEW

In this section, we will explore some different relevant
literature and explain how it connects to our current work.

A. Information-Theoretic Bounded Rationality in Robotics

There are multiple ways in which bounded rationality can be
modeled, and one popular way is through the use of informa-
tion theory. Under this framework, an agents behavior/strategy
for completing a task is represented as a stochastic distribution
over possible actions. At any given time, an agent has some
initial/instinctual behavior, called the prior policy p(a), and
based on its current world state “transforms” their prior
policy into an informed posterior policy p(al|s). Following the
formulations laid out in [1], decision making is framed as the
following optimization problem:

p*(als) = arg ITI?XE [U(s,a)] - %DKL(p(GIS)Hp(a)) (1)

P (als) = pipla)e™ e @

where [ represents the rationality for a given agent,
Dkr(p(als)||p(a)) represents the cost from transforming a
prior into a posterior, and Z(s) = Y, p(a)e’V(*%). This
framework has been used in multi-robot teams [2] to model
the behaviors of robots with different rationality levels. This
approach fell under the assumption that each agent knew
the rationality of their teammates and was able to accurately
calculate their updated posterior, however in many real world
scenarios agents will not strictly know this information. On
top of this, rationality in human agents may change over time
with one example being a human becoming less rational in
their decision making process as they become more tired. Our

framework hopes to address these problems by learning the
rationality of specific agents online during execution to more
realistically predict their behaviors.

B. Model Predictive Control in Autonomous Driving

Model Predictive Control (MPC) is a widely used frame-
work in robotics and autonomous driving, where control inputs
are computed by repeatedly solving a finite-horizon optimiza-
tion problem based on a system model and current state
[6]. MPC naturally handles system dynamics and constraints,
making it suitable for generating feasible control actions.
However, standard MPC formulations typically rely on time-
indexed reference trajectories and do not explicitly encode
progress along a path. As a result, they are limited in racing-
like scenarios, where flexible path following, corner cutting,
and overtaking are required. Model Predictive Contouring
Control (MPCC) addresses these limitations by incorporating
path-relative progress and geometric tracking terms directly
into the optimization objective.

III. APPROACHES AND METHODS

In this section, we will go into detail about the methods
applied in our work and how they are connected to one another.

A. Model Predictive Contouring Control

Model Predictive Contouring Control (MPCC) formulates
vehicle control in the spatial domain, balancing path-following
accuracy and forward progress along a reference path [3]
[4]. Unlike time-indexed MPC, MPCC optimizes geometric
tracking error and path progress directly, enabling flexible
racing-line selection and aggressive cornering. This makes
MPCC particularly suitable for autonomous racing scenarios
where strict trajectory tracking is suboptimal due to overtaking
and corner cutting. Our implementation is adapted from open-
source MPCC frameworks [7]. !

1) Spatial Formulation: The racing track is represented
by a smooth centerline parameterized by arc length 6. The
progress variable 6 is included as a system state and evolves
as

Or+1 = Ok + pr, 3)

where p; denotes the optimized progress rate. MPCC min-
imizes geometric errors relative to the reference path: the
contouring error e, and the lag error e,

e. = —sin(Y,)(xz — x,) + cos(¥. ) (y — yr), )
€ = COS(wT)(J; - xr) + Sin(wr)(y - yr)a &)

where (x,y) is the vehicle position and (z,,y,,,) is the
reference pose.

Thttps://github.com/nirajbasnet/Nonlinear_ MPCC_for_autonomous_racing



2) Finite-Horizon Optimization: At each timestep, MPCC
solves a finite-horizon optimization problem
N-1
. 2 2 2
min Y (weed x +wief, + wul[ugl]* —3pr), (6)
k=0
subject to vehicle dynamics and input constraints. This for-
mulation allows the controller to trade off path accuracy
and progress, producing racing behaviors such as smooth
cornering and adaptive speed control without a predefined
timing reference.

B. Obstacle Avoidance via Soft Constraints

Obstacle avoidance is incorporated directly into the MPCC
objective using soft constraints, enabling safe yet flexible
navigation in multi-vehicle racing scenarios [4]. Obstacles, in-
cluding other vehicles, are approximated as geometric regions
with safety margins. For an obstacle centered at (z,,y,), the
violation term is defined as

Vo = max((), To — do)v @)

where d,, is the relative distance and 7, is the safety radius.
The total cost is augmented as

N-1
J = Jupcc + Z Zwovakv ®)
k=0 o

where w, controls the aggressiveness of avoidance. This soft
formulation preserves feasibility in dense racing scenarios
while encouraging collision-free trajectories.

C. Behavior Prediction & Rationality Learning

In order to accurately predict realistic behavior that oppo-
nents will take, we need to understand how rational a specific
agent is at any given moment. Being able to predict the
rationality of opponents will give the ego car a sense of how
much effort is being used to strictly maximize the given utility
function. When it comes to human agents, this will allow the
ego car to adapt to drivers as their rationality changes over the
course of a race, with examples including increased tiredness
for individuals and switching drivers. In order to implement
this behavior, we split this section into two different compo-
nents, a prediction component and a learning component. The
prediction component will compute a prediction trajectory for
an opponent based on a current estimate of rationality while
the learning component will update the rationality estimate
based on observed actions. Information about each respective
component can be found below.

1) Prediction Component: While in the previous section
the intuition for what information-theoretic bounded rational-
ity, it does not lay out a clear path for implementing this
functionality into robotics domains, especially when either
the state or action space is continuous. To overcome this
hurdle, our method samples potential trajectories using noise
injection techniques and than uses importance sampling in
order to estimate the posterior distribution and calculate a final
predicted trajectory. The nominal control in this technique

is equivalent to a default/prior behavior and represents the
instinctual behavior an agent will take at any given time. With
traditional noise injection methods, random noise sampled
from a distribution would be added to every control sequence
on a trajectory to generate a set of unique trajectories. This ap-
proach, however, would generate unrealistic and dynamically
infeasible trajectories, therefore our approach only applies
noise a handful of times and execute the previous action. Once
a set of trajectories is sampled, each trajectory ¢ is weighed
and assign a probability:

w(t) = eBrU(®) 9)
p(1) = ) (10)

where (1 represents the current estimate of rationality at
time T, U(t) represents the utility of the trajectory, and
Z(w) = Y, w(t). These trajectories are used to calculate a
terminal trajectory that is used as the behavior estimate for an
agent and is calculated as follows:

u* = Zp(t)ut

where u; represents the control for trajectory ¢. This ter-
minal trajectory represents a prediction for the agent multiple
states into the future. In situations where a longer trajectory
is needed, this process can be repeated multiple times. Once
an predicted trajectory is calculated, the sampling process can
be repeated at the end of the current predicted trajectory to
extend the prediction further into the future.

2) Learning Component: To ensure that behavior predic-
tions stay accurate, the learning component will observe agents
actual actions and update the rationality estimate over time.
Once an agent takes an action, the observed action is extended
into a trajectory the same length as the sampled trajectories
from the previous timestep. A function is used to calculate the
closest sampled trajectory . to the observed action trajectory,
in our case this was based on the distance between state points
for trajectories. Bases on this trajectory, the estimate for S
was updated as follows:

Y

Vin(p(te; Br)) = Ulte) - ﬁ Y o) a2

Bri1 = Pr + aVin(p(te; Br)) (13)

The natural log operator is used to handle large differences
in probabilities and to simplify certain calculations.

D. Simulation Setup and Environments

To validate the proposed control architecture without risk-
ing hardware damage, we developed a customized high-
fidelity simulation environment extended from the open-source
FITENTH Gym ROS platform [6]. While existing simulators
provide essential sensor emulation (LiDAR and odometry),
our implementation introduces several key modifications to
support the development of Model Predictive Contour Control
(MPCC).



Fig. 2. Effect of MPCC parameter tuning on driving behavior in a low-fidelity
racing simulator. Top row: impact of prediction horizon length (/N = 5 left,
N = 15 right) with w. = 1000, w; = 700. Bottom row: effect of cost
weight tuning, including reduced contouring weight and increased lag weight
(we = 500, w; = 1500, left) and increased obstacle avoidance weight for
other vehicles (womer = 102, right).

1) ROS2 Software Architecture for Simulator: This digital
twin leverages the real-time modular architecture of the Robot
Operating System 2 (ROS2) [8] to replicate the software
stack of the actual vehicle. The autonomous driving sys-
tem is implemented as an independent node that interacts
with the simulator through standardized messaging interfaces.
The autonomous driving node subscribes to odometry data
(/fego_racecar/odom) for state estimation and publishes a set of
velocity and steering angle from MPCC to commands (/drive)
at a 60Hz rate. Additionally, a map server is integrated to
generate a simple path of map through track data, ensuring the
simulator provides the accurate spatial reference path needed
for the controller’s latency error calculations.

2) Real-World Experiment: After testing with simula-
tions, the proposed MPCC framework was applied to a real
FITENTH vehicle to verify its performance on a custom in-
door track. During these experiments, a Vicon motion capture
system was used instead of onboard SLAM for accurate real-
time state estimation. Reflective markers were attached to
the vehicle chassis, allowing the Vicon server to track the
vehicle’s global position. This data was integrated into the
ROS?2 stack using a bridge node that receives the Vicon stream
and converts the coordinates to the vehicle’s frame, publishing
them as standard odometry (/vicon/car_1/car_1/pose)at an 100
Hz rate. This setup enabled a seamless “simulation-to-real-
world” transition. The same autonomous driving node used in
the simulation was deployed on the hardware, requiring only
a change in topic mapping to subscribe to the odometry data
obtained from Vicon instead of the state estimation from the
simulator.

IV. RESULTS AND ANALYSIS
A. Effect of MPCC Parameter Tuning

The effect of MPCC parameter tuning was evaluated in a
low-fidelity racing simulator using both qualitative trajectory
visualization and quantitative error analysis. Fig. 2 illustrates
how changes in prediction horizon length and cost weights
affect the resulting driving behavior.

Short prediction horizons (N = 5) produce reactive trajec-
tories with limited anticipation of upcoming track curvature,
while increasing the horizon to N = 15 yields smoother
and more anticipatory motion by accounting for future path

Contouring Error Lag Error 4 Obstacte Volation L, Contouring Error Lo Error o Ovstacte Vioation

Fig. 3. Distribution of contouring error, lag error, and obstacle violation under
different MPCC parameter configurations. Boxplots show error distributions
for two vehicles (x-axis labels 1 and 2) simulated concurrently in the same
environment. Top row: effect of prediction horizon length (N = 5 left, N =
25 right) with fixed cost weights (w. = 1000, w; = 700). Bottom row:
effect of cost weight trade-offs, comparing contouring-dominant (w. = 1000,
w; = 700, left) and lag-dominant (w. = 500, w; = 1500, right) settings.

geometry. In contrast, overly long horizons (not shown) were
observed to introduce oscillatory behavior, indicating reduced
stability. Cost weight tuning further influences driving style:
reducing the contouring weight and increasing the lag weight
(w. = 500, w; = 1500) encourages more aggressive progress
at the expense of larger lateral deviations, whereas higher ob-
stacle avoidance weights (Wother = 10%) result in conservative
trajectories with increased safety margins during interactions.

Quantitative error distributions corresponding to these be-
haviors are shown in Fig. 3. Increasing the prediction horizon
from N = 5 to N = 25 reduces the spread of lag error,
indicating more consistent progress, but increases variability
in obstacle violation, suggesting reduced robustness in con-
strained regions. Cost weight trade-offs reveal a clear bal-
ance between contouring and lag errors: contouring-dominant
settings reduce lateral deviation but increase lag error, while
progress-oriented settings achieve lower lag error at the cost
of larger contouring deviations. Across all configurations,
obstacle violation distributions reflect the aggressiveness of
the tuning, with lower avoidance weights leading to stronger
interactions near obstacles.

Overall, these results demonstrate that MPCC parameter
tuning directly shapes the controller’s driving behavior, even
though the underlying control framework remains unchanged.
Different parameter priorities induce distinct driving styles
ranging from conservative to aggressive, highlighting that
controller tuning reflects value-based design choices rather
than purely technical considerations. In practice, selecting ap-
propriate parameters requires explicitly defining which objec-
tives—such as safety, smoothness, or competitiveness—should
dominate the vehicle’s behavior.

B. Bounded Rationality

The effect of the rationality coefficient on the overall pre-
diction trajectory was evaluated. Some unique behaviors arise
due to the structure of the Gibbs distribution in the original
framework and the action-sampling methods used to generate
random trajectories. In the discrete variation of information-



Fig. 4. This figure shows the effect the rationality coefficient 3 has on the
predicted trajectory. When 3 is 0, the output trajectory follows closely in line
with the default/prior behavior, in this case the nominal control is to drive
forward. As 3 starts to increase, the prediction trajectory starts following more
closely with maximizing the utility function, in this case following the path.

theoretic bounded rationality, setting 3 = 0 would collapse
the exponential component leaving p(a|s) = p(a) resulting in
an agent that does not consider its environment when making
decisions and relying on its default behavior. In the case of our
sampling based approach, this is equivalent to w(t) = 1 for
all trajectories, regardless of the calculated utility. This results
in an overall prediction trajectory calculated from the average
unweighted sum of all sampled trajectories. Since a sampled
trajectory is calculated as a nominal term plus a noise term,
with the noise term typically being a mirrored distribution
around the mean, the default behavior in this case is equivalent
to the nominal trajectory unaffected by noise. As the rationality
coefficient /3 starts to increase, trajectories with higher utilities
are given more weight when calculating the overall prediction
trajectory, leading to this trajectory falling more in line with
maximizing the utility function. This behavior can be seen in
Fig 4. When 8 = 0 the behavior follows the nominal trajectory,
in this case a trajectory where the agent does not steer. Once
B > 0, the predicted trajectory falls more in line with the
utility function, therefore falling closer in line with following
the defined path.

In order to explore learning the rationality for different
agents, we explored how the [p term converged to different
terms based on the horizon length for the MPCC controller.
A longer horizon length for the MPCC controller allow the
controller to consider more of the track at any give time
and make plans to follow it around sharp changes and turns
while a shorter horizon length only considers a few time
steps into the future and only optimizes its short term gain
while potentially sacrificing overall gain. Therefore, a short
MPCC horizon length should correlate with a low rationality
and a longer MPCC horizon length should correlate with a
higher rationality. The results for this experiment can be seen
in Fig 5. Different horizon lengths for the MPCC controller
result in the rationality term converging to different terms.
It is also important to note that the ratio between the terms

Track

Steering Angle (deg) Horizon Length Rationality

20
— Robot 1

20 15

1 . 1.0

0 .
5 0.5

0.0
150 200 250 0 50 100

— Robot 1 —— Robot 1

0

0 50 100 150 200 250 0 50 100 150 200  250|

Fig. 5. This figure shows how the predicted rationality for an agent is
correlated to the horizon length for a MPCC controller. The utility function
used in this experiment was high when on the track and lower as the vehicle
moves farther away.

that the rationality coefficient converges to are proportional to
the MPCC horizon lengths showing that these two terms are
correlated along with our module being able to account for
these changes over time. While the ratios are proportional, the
value that the rationality coefficient converges to is affected
by a variety of factors including the utility function used, the
number of trajectories originally sampled, the distribution used
to generate noise, the nominal trajectory used, etc. Both in the
original framework and our framework, rationality by itself
is an abstract term that only has meaning in the context of
the domain it is used in and the parameters used. Another
important fact to mention is the utility function for weighing
trajectories was not the exact same function used for the cost
function in the MPCC controller, however this correlation was
still present. This means that while following the assumption
that agents know the exact utility function opponents are using
leads to smoother results, using admissible heuristics can also
lead to satisfactory results allowing this framework to be more
applicable on real-world systems instead of just simulation-
based environments.

C. High-Fidelity Simulator

The high-fidelity simulation environment proved to be an
essential tool in the development of the MPCC framework.
Acting as a bridge to the physical system, the simulator
allowed us to adjust and test key cost function weights,
particularly the contouring error e. and the lag error e;. As
shown in Fig 6, this iterative adjustment process successfully
yielded a stable set of parameters that maximized theoretical
driving performance while adhering to the vehicle’s kinematic
constraints, providing a validated baseline for real-world sys-
tem implementation.

D. Real-World Experiment

In real-world experiments, the system demonstrated robust
”simulation-to-real-world transfer” capabilities. By combining
a modular ROS 2 architecture with a high-precision Vicon state



Fig. 6. This figure shows how the MPCC controller worked in the high-fidelity
simulator. The blue line shows the horizon length of the MPCC controller and
the horizon length tries to follow the red path.

estimation system, the control logic developed in simulation
could be directly applied to the FITENTH vehicle. Fig 1
shows the real vehicle successfully navigating a custom track,
confirming that the aggressive cornering behavior and stability
margins observed in simulation are reproducible on the ac-
tual hardware. This demonstrates that the proposed approach
provides a computationally feasible solution for autonomous
racing on embedded platforms.

V. CONCLUSION AND FUTURE WORK

Throughout our project, we developed a framework to
start moving closer to more realistic behavior predictions
in autonomous racing scenarios. We incorporated an MPCC
controller to follow a designated path around a race track
and explored the impacts of different tuning parameters to the
overall performance. We incorporated a behavior prediction
module using information-theoretic bounded rationality that
consists of two separate components, a prediction component
to generate prediction trajectories based on an estimated
rationality, and a learning component to update the rationality
prediction over time. Finally, we tested our methods and
results in three different environments: a low-fidelity simu-
lation environment for quick experimentation, a high-fidelity
simulation environment implemented in ROS2, and a real-
world environment using F1Tenth robots and a Vicon tracking
system.

VI. CONTRIBUTIONS

Tristan Scheiner worked on initially building and setting up
the low-fidelity environment. This was implemented in python
using matplotlib and included both a track and data graphs for
visualization. The purpose of this was to have a simulation
environment to quickly run experiments and test different
methods. He also designed and implemented the behavior
prediction section using information-theoretic bounded ratio-
nality. This consisted of two different components, a prediction
component and a learning component, and the motivation was
to start moving towards more realistic behavior prediction
methods in high-speed racing. Finally, he helped setup and
run experiments on the physical F1Tenth car using ROS2. One

potential area for future work includes enhancing the MPCC
optimization process using the predicted trajectory from the
bounded rationality module. Another area includes learning
the tuning weights for the system through a combination of
imitation and reinforcement learning.

Jiyeong Oh contributed to the development and refine-
ment of the MPCC-based control framework, including the
integration of collision avoidance via soft constraints. She
improved the low-fidelity racing simulator to support multi-
vehicle interactions, obstacle modeling, and detailed logging
for analysis. Jiyeong conducted extensive parameter tuning
experiments to analyze the effects of horizon length and cost
weight trade-offs on driving behavior, and led the quantitative
and qualitative evaluation presented in this report. In addition,
she assisted with real-world experimental setup and data
collection to support the validation of the proposed approach.

Yongjun Cho worked on exploring high-fidelity simulators
such as AutoDrive, but our team couldn’t use the simulator
due to lack of documentation and physical limitation of local
machine. Therefore, he worked on the current high-fidelity
simulator, making codes with ROS2 and tuning parameters
from the MPCC controller to make the controller work well
in the simulation. In addition, he helped with the real-world
experimental setup and experiments on the physical Fl1Tenth
car using ROS2.

REFERENCES

[1] T. Genewein, F. Leibfried, J. Grau-Moya, D. Braun, Bounded Ratio-
nality, Abstraction, and Hierarchical Decision-Making: An Information-
Theoretic Optimality Principle, Front. Robot. Al, 2015

[2] J. Xu, D. Pushp, K. Yin, L. Liu, Decision-Making Among Bounded
Rational Agents, Distributed Autonomous Robotic Systems, 2024

[3] D.Lam, C. Manzie, and M. Good, Model Predictive Contouring Control,
in Proc. 49th IEEE Conf. on Decision and Control (CDC), 2010, pp.
6137-6142.

[4] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, Model Predictive
Contouring Control for Collision Avoidance in Unstructured Dynamic
Environments, IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.
4459-4466, 2019.

[5] Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. (2000).
Constrained model predictive control: Stability and optimality. Automat-
ica, 36(6), 789-814.

[6] FITENTH Foundation, fltenth_gym_ros: ROS2 wrapper for FITENTH
Gym, https://github.com/f1tenth/f1tenth_gym_ros.

[7]1 N. Basnet, Nonlinear MPCC for Autonomous Racing, https://github.com/
nirajbasnet/Nonlinear_ MPCC_for_autonomous_racing

[8] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, Robot
Operating System 2: Design, architecture, and uses in the wild, Science
Robotics, vol. 7, no. 66, 2022.


https://github.com/f1tenth/f1tenth_gym_ros
https://github.com/nirajbasnet/Nonlinear_MPCC_for_autonomous_racing
https://github.com/nirajbasnet/Nonlinear_MPCC_for_autonomous_racing

	Introduction
	Background
	The F1TENTH Platform
	Bounded Rationality in Decision Making
	From Model Predictive Control (MPC) to MPCC

	Motivation & Objectives
	Problem Statement

	Literature Review
	Information-Theoretic Bounded Rationality in Robotics
	Model Predictive Control in Autonomous Driving

	Approaches and Methods
	Model Predictive Contouring Control
	Spatial Formulation
	Finite-Horizon Optimization

	Obstacle Avoidance via Soft Constraints
	Behavior Prediction & Rationality Learning
	Prediction Component
	Learning Component

	Simulation Setup and Environments
	ROS2 Software Architecture for Simulator
	Real-World Experiment


	Results and Analysis
	Effect of MPCC Parameter Tuning
	Bounded Rationality
	High-Fidelity Simulator
	Real-World Experiment

	Conclusion and Future Work
	Contributions
	References

